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Abstract. We will in this note show that it is possible to diagonalise the Lund fragmentation model. We
show that the basic original result, the Lund area law, can be factorised into a product of transition op-
erators, each describing the production of a single particle and the two adjacent break up points (vertex
positions) of the string field. The transition operator has a discrete spectrum of (orthonormal) eigenfunc-
tions, describing the vertex positions (which in a dual way correspond to the momentum transfers between
the particles produced) and discrete eigenvalues, which only depend upon the particle produced. The eigen-
functions turn out to be the well-known two-dimensional harmonic oscillator functions and the eigenvalues
are the analytic continuations of these functions to timelike values (corresponding to the particle mass).
In this way all observables in the model can be expressed in terms of analytical formulas. In this note only
the 1+1-dimensional version of the model is treated, but we end with remarks on the extensions to gluonic
radiation, transverse momentum generation etc., to be performed in future papers.

1 Introduction

The Lund fragmentation model is built upon a few very
general assumptions: there is a stringlike force field be-
tween the coloured constituents, there is causality and
Lorentz covariance, the production of the particles can be
described in terms of a stochastical process and the pro-
cess will obey a saturation hypothesis. Using semi-classical
probability considerations we are then led [1,2] to a unique
stochastical process for the break up of the force field into
the final state hadrons. In Sect. 2, we will provide a set
of necessary formulas to describe the dynamical develop-
ments along the surface, spanned by the string field. The
major result is that the probability to reach a particu-
lar (exclusive) final state is given by the phase space of
the state multiplied by a negative exponential of the area
spanned before the string decays (“the Lund area law”).
In general the model has been used as it is implemented
in the well-known Monte Carlo simulation program Jetset
[3]. This means, on the one hand, that it is possible to take
into account a large amount of kinematical complications,
in particular from the decay of the primary produced res-
onances. On the other hand, in order to make the simula-
tion programs time-effective, it is necessary to introduce
routines that make the process rather difficult to follow.
In particular, it is difficult to disentangle the major dy-
namical features of the model from the many necessary
numerical compromises in the simulation program.

In this note, we will show how to diagonalise the basic
stochastical process, i.e. how to define a complete set of
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eigenfunctions and eigenvalues describing the process on
the local level. In this way we can provide analytical for-
mulas for all possible correlations between the observables
in the process.

In Sect. 3, we will factorise the Lund area law in a
somewhat different way than usual. It is done by defining
an operator that describes the transition from one pro-
duction point to the next in the process. It can be writ-
ten as an integral operator describing the probability to
go from one break up point along the string field to the
next, thereby producing a particular hadron. We show how
to diagonalise the operator in terms of its eigenfunctions
(which in a very neat way corresponds to two-dimensional
harmonic oscillator functions) and calculate its eigenval-
ues, that are closely related to the Lund fragmentation
function.

These eigenvalues turn out to be the major building
stones in all the model correlations, and in Sect. 4 we show
a set of properties of the eigenvalues. It turns out that
the eigenvalues form a discrete set, and that they corre-
spond to analytical continuations of the harmonic oscilla-
tor eigenfunctions from spacelike to timelike regions. We
show how to use the factorisation properties of the model
to provide a set of useful relations for the products of
the eigenvalues. We also exhibit the relationship to a field
theory in a two-dimensional Euclidian space that will be
further pursued in future publications.

We will in this note be satisfied to treat only the sim-
plest case corresponding to the 1+1-dimensional dynamics
of the Lund model. We will, however, end with an outlook
on future work, in particular on the effects of gluon emis-
sion and transverse momentum properties of the hadroni-
sation process.
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Fig. 1. A high-energy string break up of an original q0q0 pair,
created at a single space-time point

2 The Lund fragmentation model

The massless relativistic string is in the Lund model used
as a model for the colour force fields with colour-3 quarks
(q) and colour-3̄ antiquarks (q̄) at the endpoints. Finally,
the colour-8 gluons (g) are in the Lund model interpreted
as internal excitations on the string. We will, in this note,
treat all the (qq̄) particles as massless and moving along
the lightcones. However, the final result is independent of
this assumption, cf. [2] (massive q and q̄ would in a semi-
classical scenario move along hyperbolas with the light-
cones as asymptotes). Further, we will as examples of the
formalism consider only e+e−-annihilation reactions and
refer other processes as well as gluonic bremsstrahlung to
future work.

Then an original q0q̄0 pair is assumed to be created at
a single space-time point and start to go apart, thereby
stretching the string field in between them (cf. Fig. 1).
The field will break up into new pairs at the vertices xj =
(xj+, xj−) (we use lightcone coordinates) and a q ≡ qj−1
will together with a q̄ ≡ q̄j from the adjacent vertex form
a final state hadron with the energy-momentum pj .

In this way we have introduced a convenient ordering
in the form of rank: the first rank particle is formed by
(q0q̄1), the second rank by (q1q̄2), etc. It is also possible
to introduce a rank ordering from the q̄0 side, i.e. along
the opposite lightcone starting with (q̄0qn−1) in an n par-
ticle final state. The dynamical results should of course
be independent of the ordering. Actually, it is easy to
convince oneself that it is necessary that all the vertices
must be spacelike with respect to each other. One finds
that the energy-momentum of the jth particle is given by
pj = κ(xj−1+ − xj+, xj− − xj−1−) (here κ � 1GeV/fm is
the string constant and we will for simplicity put it equal
to unity). As the vector pj must be timelike (with squared
mass equal tom2

j = p2j ) we conclude that the two adjacent
vertices are spacelike.

There is immediately a second conclusion. If we define
the vectors qj = (xj+,−xj−) then we obtain that pj =
qj−1−qj . This means that the Lund fragmentation process
also can be described by means of a ladder graph as in
Fig. 2. Thus the energy-momentum transfers between the
particles along the ladder is in a dual relationship to the
production vertices in the description in Fig. 1. We will
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Fig. 2. The production process described in terms of momen-
tum transfers in a chain

pj

j-1

z

x

j-1
+

κ
x

κ x

qq
0 0j j-1x

Fig. 3. Two adjacent vertices with coordinates xj and xj−1 (in
the center of the process) and a hadron with energy-momentum
pj produced in between

use this relationship in Sect. 3 to derive the results of this
paper.

The derivation of the Lund model formulas is based
upon these observations and a final assumption: even if
the energy of the original pair (in the cms denoted con-
ventionally W = s1/2) will increase without limit the dis-
tribution of the proper times of the production vertices
Γj = x2

j = xj+xj− will stay finite. In terms of the mo-
mentum transfers this “saturation assumption” evidently
corresponds to (one of) the ordinary assumptions behind
Gribov’s Reggeon theory, that the momentum transfers
stay finite in this limit.

To see the details, we will concentrate on two adja-
cent vertices in the center of the process with the coordi-
nates xj and xj−1 such that the above-mentioned hadron
with pj is produced in between, cf. Fig. 3. It is conve-
nient to introduce the coordinates z+ = 1 − xj+/xj−1+
and z− = 1 − xj−1−/xj− that are Lorentz invariants and
will have the range 0 ≤ z± ≤ 1 independent of the other
variables. We also describe the vertices by the hyperbolic
coordinates (Γ�, y�), � = j − 1, j and note that due to
Lorentz covariance the process can only depend upon the
Γ ’s (i.e. the proper times squared) and the relative hyper-
bolic angles δyj = yj−1 − yj (note that the δy’s will be
fixed by the mass requirements).

We will then consider the break up vertex xj−1 to be
the last in a long row of production points along the pos-
itive lightcone and using the saturation assumption we
expect that the probability distribution is
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Fig. 4. The two areas used in (5). The large area is the one
spanned below the first meeting point of the two constituents
from the adjacent vertices

H(xj−1)dxj−1+dxj−1− ≡ H(Γj−1)dΓj−1dyj−1. (1)

In the second line we have made use of Lorentz invariance
to claim that the function H only depends upon Γj−1.
The production of the particle pj is then given by another
“step” along the positive lightcone with the probability
f(z+)dz+ to take the fraction z+ of the remainder. Then
the combined probability is given by

H(Γj−1)dΓj−1dyj−1f(z+)dz+. (2)

In the same way we may consider the production of the
particle as the last in a long row of steps along the negative
lightcone, firstly arriving at the vertex xj with the proba-
bility H and then taking another step along the negative
lightcone. In this way we obtain the joint probability

H(Γj)dΓjdyjf(z−)dz−. (3)

The basic assumption in the Lund model is then that the
two probability distributions in (2) and (3) are equal and
this defines in a unique way the distributions H and f [1,
2]:

Hj(Γ ) = CjΓ
aj exp(−bΓ ),

fj−1,j(z) = Nj−1,j(1 − z)ajzaj−1−aj−1 exp(−bm2/z). (4)

The parameters aj (with the notation for fj−1,j meaning
that the hadron with mass m is produced in a step from
the point j − 1 to the point j) may be different for differ-
ent vertices (e.g. spin and/or flavour dependent) but the
parameter b should be the same, i.e. it must correspond to
a general colour dynamical property. (Speculations on its
origin can be found in e.g. [2].) In the phenomenological
applications of the Lund model there has (besides the first
particle in a heavy quark jet according to a suggestion by
Bowler [4]) been no use for more than a common a-value.
We will in general in this paper treat this simpler case
and only when it is useful exhibit the differences to the
general case. Finally, the parameters Cj and Nj−1,j are
normalisation constants.

The joint probability distribution H(Γ )f(z) can then
be written as

H(Γ )f(z) ∝ CN [(1 − z)Γ ]a exp(−b(Γ +m2/z))
≡ (area)a exp(−b(Area)), (5)

where the two areas, the large and the small one, are
shown in Fig. 4. Evidently, the opposite production direc-
tion will produce the same result and the areas play there-
fore, due to their simple factorisation properties (just as
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Fig. 5. An N -particle cluster with notation as explained in
the text

they do in general for gauge field theories), a fundamen-
tal role in the process. (If there are different values of the
a-parameter the result is similar with different areas rep-
resented, one typical of each vertex.)

We will next consider the probability to produce a
rank-connected N -particle set {pj}, for definiteness along
the positive lightcone starting at the turning point of the
original q0 (cf. Fig. 5). The first rank particle will then
take a fraction z1 of the total lightcone energy-momentum,
the second will take a fraction z2 of what is left, i.e.
(1 − z1), etc. The observable fractions are then ζ1 ≡ z1,
ζ2 = z2(1 − ζ1), ζ3 = z3(1 − ζ1 − ζ2) = z3(1 − z1)(1 − z2),
etc. In this way we obtain in easily understood notation
[1,2]

N∏
1

Nj
dzj
zj

(1 − zj)a exp(−bm2
j/zj)

=
N∏
1

Nj
dζj
ζj

(
1 −

N∑
1

ζj

)a

exp(−b(A+ Γ ))

= ds
dz
z

(1 − z)a exp(−bs(1 − z)/z)
N∏
1

Nj
duj

uj

× exp(−bA)δ
(
1 −

N∑
1

uj

)
δ

(
s−

N∑
1

m2
j/uj

)

≡ dPextdPint. (6)

In the second line, we have introduced the variables ζj
defined above and in the third the common variable z =∑N

1 ζj , and we finally rescaled the fractions into uj =
ζj/z. We have also introduced the total area (according
to Fig. 5) Atot = A + Γ and the total cms energy s1/2

of the N -particle cluster. We note that the “final” vertex
proper time squared is Γ = (1 − z)s/z.

The final result is then that the probability distribu-
tion can be factorised into two parts. One of them (dPext)
(note that it is independent of the multiplicity N) is the
probability to make a cluster of mass s1/2 and lightcone
fraction z. We note the close similarity to the fragmenta-
tion function for a single particle f in (4). The other one
(dPint) is the probability that the cluster will decay into
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just these particular particles with the fractional energy
momenta uj in the cluster cms.

The distribution dPext for the general case when sev-
eral values of a occurs will only depend upon the first and
the last a-values:

dPext = ds
dz
z
za0

(
1 − z
z

)an

exp(−bΓ ). (7)

The distribution dPext can be used to study the conver-
gence of the “saturation assumption” on the distribution
H. One finds [2] that for squared cms energies s larger
than a few times the inverse of the parameter b there is
an exponential convergence.

The distribution dPint can be reformulated using that
duj/uj is equivalent to d2pδ(p2 − m2) and that the two
delta functions in the same way can be written in terms of
the particle energy momenta (pj = (ujPtot+,m

2/
ujPtot+)), Ptot = (Ptot+, s/Ptot+)

δ

(
1 −

n∑
1

uj

)
δ

(
s−

n∑
1

m2
j/uj

)

= δ2
(

n∑
1

pj − Ptot

)
. (8)

Putting this together we obtain the Lund model area law:

dPint =
n∏
1

Njd2pj

× δ(p2j −m2
j )δ

(
n∑
1

pj − Ptot

)
exp(−bA). (9)

In the case of different a-parameter values we obtain an
extra factor for each j: u(δa)j

j with (δa)j = aj−1 − aj , i.e.
only the differences of the adjacent a-values occur. (It is
useful to note that u+ju−j = m2

j/s in order to see that the
formula is symmetric between the forward and backward
lightcones.)

3 The transition operator
and its eigenfunctions

We will in this section rearrange the Lund model area
law, cf. (9), in another form, i.e., as a product of a set
of step operators taking us from one vertex to the next
thereby producing a particle in between. We will after
that show that this transition operator has a well-defined
set of eigenfunctions with discrete eigenvalues.

To do that, we note that the area A can according
to Fig. 6 be subdivided into (hyperbolic) triangular re-
gions (each with an extra “tip” corresponding to half of
the squared mass; we neglect them for the moment and
note that they can be included in the particle produc-
tion constants Nj). The size of these regions are given

2

j j-1

A

m j

Fig. 6. The area A subdivided into triangular regions as de-
scribed in the text

by (δA)j = (Γj−1Γj)1/2| sinh(δyj)| (we are using the no-
tations from the earlier section) and one finds by direct
calculation that

(δA)j =
√
λ(Γj−1, Γj ,−m2

j )/2,

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ac. (10)

If we introduce the lightcone fraction z according to Fig. 3,
then we can write

Γj−1 = (1 − z)(Γj +m2
j/z),

(δA)j = (zΓj +m2
j/z)/2. (11)

We also note the vectors qj = (xj+,−xj−) (with −q2j =
Γj) that fulfill pj = qj−1−qj , thereby “solving” the energy-
momentum conservation conditions in (9). If we introduce
them instead of the particle vectors {pj}, then we find the
Jacobian

d2pjδ(p2j −m2
j ) = dΓj/

√
λ(Γj−1, Γj ,−m2

j ). (12)

We can consequently subdivide the whole process accord-
ing to the area law as

dPint =
n∏
1

K(Γj−1, Γj ,m
2
j )dΓj ,

K(Γj−1, Γj ,m
2
j ) = Nj

×
exp(−b/2

√
λ(Γj−1, Γj ,−m2

j ))√
λ(Γj−1, Γj ,−m2

j )
. (13)

A useful representation of the kernel function K is (it is
easily obtained from the considerations above)

K(Γj−1, Γj ,m
2
j )

=
∫ 1

0

dz exp(−b(zΓj +m2
j/z)/2)

z

×δ(Γj−1 − (1 − z)(Γj +m2
j/z)). (14)

(To be precise the result in (13) must be supplemented by
boundary conditions but we will neglect them because in
this paper we will only be interested in results outside
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the fragmentation regions.) It is useful to consider the
eigenfunctions of the transition operator K. For simplicity
we will introduce the dimensionless variables Γ� → bΓ� ≡
x� and m2

� → bm2
� = y� and consider the solution to the

equations

λngn(x) =
∫
K(x, x′, y)gn(x′)dx′. (15)

The surprising and very gratifying result we obtain is that
the functions gn are well known in mathematical analysis.
We are going to call them the Laguerre functions (noting
that the Laguerre polynomials Ln are orthonormal in the
measure dx exp(−x))

gn(x) = Ln(x) exp(−x/2). (16)

They are orthonormal on the positive real axis 0 ≤ x ≤ ∞
in the measure dx (we use the notations from [5]):∫ ∞

0
dxgn(x)gm(x) = δn,m,∑

n

gn(x)gn(x′) = δ(x− x′). (17)

Further, the Laguerre functions are the eigenfunctions of
the two-dimensional harmonic oscillator corresponding to
angular momentum equal to zero. In fact, it is easy to
prove that the eigenfunctions gn will fulfill the following
equation because of the well-known properties of the La-
guerre polynomials Ln:

x
d2Ln

dx2 + (1 − x)dLn

dx
+ nLn = 0,

(− � +bQ2)gn(bQ2) = 2(2n+ 1)gn(bQ2). (18)

In the second line, we have considered the two-component
vector Q with the scalar product Q2 = Q2

1 ± Q2
0. The

differential operator is correspondingly defined as � =
(∂2/∂bQ2

1) ± (∂2/∂bQ2
0) i.e. the equation is valid both

for Euclidian metric and for spacelike directions in two-
dimensional Minkowski space.

We note in particular that the eigenfunctions are in-
dependent of the mass m of the particle produced in be-
tween; this mass dependence comes solely in the eigenval-
ues

λn(y) = N exp(y/2)
∫ 1

0
dz/z exp(−y/z)(1 − z)n. (19)

Here we have kept to the definition of the hyperbolic tri-
angle, without the “tip”, in the kernel function K (cf.
the remarks before the (10)). We will be concerned with
the properties of the eigenvalues in the next section but
we note at this point their close relationship to the Lund
fragmentation function f (for equal a-values) in (4). It is
also obvious from (19) that the eigenvalues will be discrete
and decrease quickly with n.

To obtain these results from (15), we make use of the
representation of the kernel function K in (14) and find
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of p, x and x′ when y = 0.5

the following necessary (and sufficient) requirements on
the Laguerre polynomials:

λnLn(x) =
∫ 1

0
dz/z exp(−y/z)Ln((1 − z)(x+ y/z)).(20)

It is easy to see that for a polynomial of the nth degree the
eigenvalues λn will have to fulfill (19). However, to prove
the general result in (20) we have expanded both sides in
powers, performed for the mth term inside the integral
0 ≤ � ≤ m partial integrations (to get rid of the powers of
y) and then gathered the powers in x. We feel that there
must be a simpler way but we have not found it yet.

Given these results, we note that a theorem attributed
to Mercer (private information [6]) provides the following
representation for the transition operator K:

K(x, x′, y) =
∞∑

n=0

gn(x)λn(y)gn(x′). (21)

In order to check the convergence properties of (21), we
show in Fig. 7 the results for the ratio of the left-hand
to the right-hand side of the equation. It is evidently in
general only necessary to keep a few terms to obtain a
good approximation.

Due to the orthonormality of the Laguerre functions, it
is further immediately obvious that, while (21) represents
the distribution after a single particle production between
x′ and x, the result for the production of N particles in
between them is given by

KN (x, x′) =
∞∑

n=0

gn(x)(λn(y))Ngn(x′). (22)

In the next section, we will show how to provide a formula
for a fixed invariant mass square s and/or a fixed lightcone
fraction z (thereby completely defining the relationships)
between the points labelled by x′ and x.
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4 The properties of the eigenvalues

We will in the following discussion for simplicity put the
normalisation constant N equal to unity but we will insert
it in the end formulas. Then the eigenvalues λn(y) (with
y = bm2) defined in (19) will have the following property:

exp(y/2)λn(y) =
∫ 1

0
dz(1 − z)n exp(−(1 − z)y/z)

z

=
∫ 1

0
dz
∑
m

(1 − z)m+nLm(y) =
∑
m

Lm(y)
m+ n+ 1

. (23)

We have here, in going from the second to the third line in
(23), made use of the generating function for the Laguerre
polynomials ([5]):

∑
n

Ln(y)zn =
∑

k

(−y)k
k!

∑
m

zm+k(m+ k)!
m!k!

=
exp[−yz/(1 − z)]

(1 − z) . (24)

In the second line, we have introduced the series expansion
for the Laguerre polynomials, rearranged it by changing
the original index n→ m+ k and then summed up firstly
a negative binomial and then an exponential series.

Consequently, the eigenvalue for n can be written as a
series in the eigenfunctions gm and we may from this rep-
resentation immediately conclude (using the differential
equation in (18)) that the eigenvalues will fulfill

(− � +bp2)λn(bp2) = −2(2n+ 1)λn(bp2) + 4δ(bp2). (25)

Here we have introduced the timelike vector p with length
equal to the mass (and the differential operator � is de-
fined in terms of ps components). We have also used the
result in (17) noting that gm(0) = 1 for all values of m.
We conclude that also the eigenvalues are governed by the
harmonic oscillator equation and that they correspond to
a particular analytic continuation of these functions from
spacelike to timelike vectors.

Actually, the eigenvalues λn(y) are solutions to the
(degenerate) hypergeometric differential equation and in
conventional notation [5] in terms of Whittaker functions
we have λn(y) = n!W−n−1/2,0(y)/y1/2. Using either the
differential equation in (25) or the formulas in [5] we ob-
tain another useful representation that bears out these
analyticity properties:

λn(y) =
∫ ∞

0
dt
gn(t) exp(−(t+ y)/2)

t+ y
. (26)

Next we will consider the correlation coefficients for the
case when we produce N particles in between the vertices
denoted x and x′ in (22). Using the same procedure as in
connection with the derivation of the N -particle cluster in
(6), we can immediately write

λN
n (y) =

∫
dsRN (s)λ̂n(bs),

RN (s) =
∫ N∏

1

Njd2pjδ(p2j −m2
j )

×δ
(

N∑
1

pj − Ptot

)
exp(−bA),

λ̂n(bs) = exp(bs/2)λn(bs). (27)

The quantity λ̂n(bs) is the probability (in the nth har-
monic oscillator state) to produce a cluster with the en-
ergy s. It is the integral over all z-values of dPext in (6)
(with the Lund parameter a exchanged for n). In the same
way RN (s) is related to the integral over dPint in (6), i.e.
it is the phase space integral (including the area law) of
the N particles. We have brought back the normalisation
constants Nj in the expression for RN .

It is now evident how to obtain the distributions of x
and x′ when there are N particles with a fixed squared
mass s in between:

∑
n

gn(x)λ̂n(bs)RN (s)gn(x′). (28)

We will next turn to the properties of the phase space
integrals RN but before that we make the following ob-
servation. The model has very simple factorisation prop-
erties both in the energy-momentum fractions and, as we
have shown in this note, in the energy-momentum trans-
fers (or in the dual language, in the vertex positions). Con-
sequently, it is in the same way as in (28) possible to pick
out any other variables, like particular energy-momentum
fractions, somewhere “in between” and reformulate the re-
maining correlation coefficients accordingly. (It is of course
necessary to define the scaling variables properly.) As ev-
ery possible observable is either related to the energy-
momentum transfers or to the energy-momentum of the
observed particles we have in this way a complete analyt-
ical description of the process.

We will show two particularly simple and useful prop-
erties of the phase space integrals RN . They fulfill a set
of iterative integral equations and there are very simple
formulas for the analytic function RN which is defined by

RN (u) =
∫

ds
RN (s)
s+ u

. (29)

To see these properties we note that if we “pick out” the
first rank particle from the N -particle cluster that defines
RN we obtain, cf. (6) and (27), N1du1/u1 exp(−bm2/u1).
The remaining (N − 1) particles will give the same con-
tribution but the energy is reduced to s1 = (Ptot − p1)2 =
(1 − u1)(s − m2/u1). We consequently have the integral
equation

RN (s) =
∫ 1

0

N1du1

u1
RN−1((1 − u1)(s−m2/u1))

× exp(−bm2/u1). (30)

We note the similarity to the original integral equations for
the harmonic oscillator functions gn(x), but there are two
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major differences. The first is the change of sign in front
of the term m2/u1 in the integral (reflecting the fact that
we are going from the spacelike vectors qj to the timelike
vector Ptot). The second difference is that the argument in
the functions RN and RN−1 do not have the same range.
It is evident that the threshold for producing N particles
is sN,thresh = N2m2 which is larger than the threshold for
N − 1 particles.

There is, however, another relation which will make it
possible to calculate the functions RN analytically at least
as a perturbation series. In order to see that, we consider
the following sum and use the results from (27):∑

n

(λn(y))NLN (bu)

=
∫

dsRN (s)
∫

dz
z

exp−bs(1 − z)/z
∑

n

(1 − z)nLn(bu)

=
∫

dsRN (s)
∫

dz
z2

exp−(bs+ bu)(1 − z)/z
= RN (u)/b. (31)

We have once again used the generating function in (24)
and performed the z integral. In this way we have a repre-
sentation of the analytic function R along the positive real
u-axis. It is, however, necessary to extend this function to
the negative real axis in order to obtain the properties of
RN . We note in passing that the first line in (31) is (be-
sides a factor exp(−bu/2)) the contribution for the case
when we would start out at the lightcone x = 0 and con-
sider N steps to the point x′ = bu (gn(0) = 1 for values
of n). This result can be used in a perturbation theory
by noting that for large values of n we have the following
behaviour of our functions:

gn(x) � J0(2
√
nx) and

λn(y) �
√

2/πK0(2
√
ny). (32)

We can then in this approximation write

∑
n

gn →
∫

d2v

2π
exp(i2*v*µ),

λn(y) →
∫

d2t

(2π)3/2

exp(i2*v*t)
*t2 + y

. (33)

We have then defined two-dimensional Euclidian vectors
with *µ2 = u and with *v2 → n. Therefore the whole ex-
pression can approximately be written

exp(−bu/2)R(u) =
∑

n

(λn(y))Ngn(bu) →
∫ N∏

j=1

d2tj

(2π)3/2(*t2j + y)

∫
d2v exp

(
i2*v
(
*µ−∑*tj))

2π

=
∫ N∏

j=1

d2tj

(2π)3/2(*t2j + y)
δ
(
*µ−

∑
*tj

)
/4. (34)

In this way we have exhibited the analytical function exp
(−bu/2)RN (u) for values of u ≥ 0 as the contribution

from a simple expression obtainable in a two-dimensional
Euclidian field theory. (Note that we use the Laguerre
functions gn and not the Laguerre polynomials Ln in our
approximations.)

We note that the approximation corresponds to the
large n limit of the harmonic oscillator function, i.e. we
are far away from the ground state and consequently “the
motion” behaves as almost free oscillations.

It is possible inside the same formalism to take the ne-
glected terms in the approximation into account as further
contributions in the model. We can use the present results
to show that the convergence radius in an expansion of RN

around u = 0 is given by N2m2 (just as expected). But
further terms in the expansion are necessary in order to
obtain the precise threshold behaviour. We will present
such results in future publications.

5 Concluding remarks

Due to its simple factorisation properties, the Lund frag-
mentation model can as we have shown in here be diago-
nalised in terms of harmonic oscillator functions. We have,
up to now, only treated the 1 + 1-dimensional version of
the model, but we will, in future publications, continue
this work into the 3 + 1-dimensional real world.

Transverse momentum is in the fragmentation process
of the Lund model produced via a tunneling mechanism,
leading to a Gaussian spectrum. In the simplest version
of the model, there are no correlations between the trans-
verse momentum generated at one vertex and at the next
but the experimental data show [7] that such correlations
occur at least in the production of the light pions. A mech-
anism, with strong similarities to the Ornstein–Uhlenbeck
process for the velocity distribution of a Brownian motion
particle, has been proposed and succesfully applied to the
data [8].

As this process again is of a Gaussian character, we
may use very similar methods to diagonalise it, cf. also
[9]. There is, however, a small subtlety. If the transverse
momentum is firstly generated and afterwards the string
field used to provide longitudinal momentum (as in Jetset)
then the transverse mass is used instead of the ordinary
mass. This would provide a particular correlation between
transverse and longitudinal motion. We will come back in
a later publication to a general investigation of the dy-
namics.

Gluon radiation is in the Lund model treated in terms
of internal excitations of the string field and this will lead
to a bent string surface [2]. The fragmentation of states
containing one or more gluons has been introduced into
the Lund model by Sjöstrand [10] using a particular gen-
eralisation of the process described above. This process is
implemented in Jetset and has been very succesful in de-
scribing the experimental data. The method we have in-
troduced above for a flat string surface can almost directly
be applied (there is a minor change, that we feel may have
some implications for the description of the fastest parti-
cles in a gluon jet) to the method introduced by Sjöstrand.
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Bose–Einstein correlations have been introduced into
the Lund model by interpreting the Lund area law as stem-
ming from the square of a quantum mechanical transition
matrix element [11,12]. This means that the area law for
the production of two or more identical particles obtains
a weight factor depending upon the area differences. One
problem in this respect is that with n identical particles
the weight factor will obtain contributions from the n! dif-
ferent permutations of the particles. The mathematicians
call these problems exponential in n and they are very
time-consuming (although we were in [12] able to bring
them down considerably). As the area differences are di-
rectly expressible in terms of the variables we have dis-
cussed above we have some hope to be able to re-express
the full result by means of our formalism.

Finally, we have obtained a new set of tools to study
the energy dependence of quantities like RN (s) and even
more interestingly the sum over all the multiplicities R(s)
=
∑

N RN . This dependence will necessarily be of a sa
nature. This is known from before [1,2] but the power a,
which corresponds to a “Regge intercept” in quark scat-
tering, in accordance with Gribov’s Reggeon theory, will in
this way be accessible for analytical treatment. Evidently
the corresponding power obtained for a “gluon fragmenta-
tion process” will have some meaning for the soft Pomeron
intercept.
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